UDC: 
DOI: 
10.22389/0016-7126-2023-994-4-39-49
1 Kolesnikov A.A.
Year: 
№: 
994
Pages: 
39-49

Siberian State University of Geosystems and Technologies

1, 
Abstract:
The features of automating the processing of spatial data using geographic information systems are discussed. The main directions of automation at spatial data processing, including the use of artificial intelligence technologies, are identified. Possible technical approaches to that in geoinformation systems are identified and described. The software implementation of the listed techniques involving open source software is considered, using the example of a typical sequence of actions at working with spatial information: clipping vector data for a specified polygonal object, saving the results to a new set of files and projecting it into a given coordinate system (developed in the process research modules and scripts are available in the public repository). The existing standards and an example of the spatial data processing implementation using the concept of microservice architectures are considered. A summary table of the advantages and disadvantages of the described methods was compiled.
This work is supported by the Ministry of science and higher education of the Russian Federation (grant number 075-15- 2020-804)
References: 
1.   Bychkov I. V., Ruzhnikov G. M., Paramonov V. V., Shumilov A. S., Fedorov R. K. Infrastrukturnyi podkhod k obrabotke prostranstvennykh dannykh v zadachakh upravleniya territorial'nym razvitiem. Vychislitel'nye tekhnologii, 2018, Vol. 23, no. 4, pp. 15–31. DOI: 10.25743/ICT.2018.23.16488.
2.   Vasil'ev A. F. Avtomatizatsiya proektirovaniya geometricheskoi modeli seti dorog s pomoshch'yu GIS-dannykh. Gornyi informatsionno-analiticheskii byulleten' (nauchno-tekhnicheskii zhurnal), 2015, no. 8, pp. 360–367.
3.   Efremova T. F. Novyi slovar' russkogo yazyka. Tolkovo-slovoobrazovatel'nyi. – V 2-kh tomakh. Moskva: Russkii yazyk, 2000, Vol. 1, 1232 p.
4.   Ivanov A.G., Zagrebin G.I. Razrabotka metodiki avtomatizirovannogo vybora kartograficheskoj proekcii pri realizacii melkomasshtabnogo kartografirovaniya. Izv. vuzov. Geodeziya i aehrofotos"yomka, 2011, no. 1, pp. 98–100.
5.   Kolesnikov A. A., Plitchenko E. A., Kropacheva M. K. Avtomatizatsiya podgotovki kartograficheskikh dannykh s pomoshch'yu sistem obrabotki estestvennogo yazyka. InterKarto. InterGIS, 2022, Vol. 28, no. 1, pp. 659–669. DOI: 10.35595/2414-9179-2022-1-28-659-669.
6.   Kornaukhov P. S., Artyukhina A. A., Kretinina I. S., Vaneeva M. V. Analiz tselesoobraznosti primeneniya GIS dlya avtomatizatsii raboty s geodezicheskimi dannymi v tselyakh zemleustroistva. Aktual'nye problemy zemleustroistva, kadastra i prirodoobustroistva: Materialy II mezhdunar. nauch.-prakt. konf, Voronezh: Voronezhskii gos. agrarnyi un-t im. Imperatora Petra I., 2020, pp. 227–237.
7.   Loginov D.S. (2021) Application of computer technologies and their potential to develop geophysical mapping. Geodezia i Kartografia, 82(7), pp. 9-20. (In Russian). DOI: 10.22389/0016-7126-2021-973-7-9-20.
8.   Nepoklonov V. B., Shlapak V. V., Tsvetkov V. Ya., Lonskii I. I. Avtomatizatsiya obrabotki vizual'noi geoprostranstvennoi informatsii GIS. Informatsiya i kosmos, 2018, no. 2, pp. 93–97.
9.   Hofer B., Brauner J., Jackson M., Granell C., Rodrigues A., Nüst D., Wiemann S. (2015) Descriptions of Spatial Operations – Recent Approaches and Community Feedback. International Journal of Spatial Data Infrastructures Research, no. 10, pp. 124–137.
10.   Hulsebos M., Hu K., Bakker M., Zgraggen E., Satyanarayan A., Kraska T., Demiralp Ç., Hidalgo C. (2019) Sherlock: A deep learning approach to semantic data type detection. KDD`19: Proceedings of the 25th ACM SIGKDD International conference on knowledge discovery and data mining. pp. 1500–1508. DOI: 10.1145/3292500.3330993.
11.   Kuźma M. (2020) The use of GIS tools in the automation of examining the cartometry of old maps. Polish Cartographical Review, no. 52 (4), pp. 152–161. DOI: 10.2478/pcr-2020-0013.
12.   Taïs G., Lennert M., Beaumont B., Vanhuysse S., Stephenne N., Wolff E. (2017) An open-source semi-automated processing chain for urban object-based classification. Remote Sensing, no. 9 (4), pp. 358–381. DOI: 10.3390/rs9040358.
13.   Wasser L., Joseph M. B., McGlinchy J., Palomino J., Korinek N., Holdgraf C., Head T. (2019) EarthPy: A Python package that makes it easier to explore and plot raster and vector data using open source Python tools. Journal of Open Source Software, no. 4 (43), pp. 1886–1888. DOI: 10.21105/joss.01886.
14.   Weyand T., Kostrikov I., Philbin J. (2016) PlaNet – photo geolocation with convolutional neural networks. ECCV 2016: Computer Vision. Springer, Amsterdam, pp. 37–55.
15.   Yaman B., Thompson K., Brennan R. (2021) A SKOS taxonomy of the UN global geospatial information management data themes. CEUR Workshop Proceedings. CEUR-WS. pp. 89–96.
Citation:
Kolesnikov A.A., 
(2023) Technical approaches to automating typical GIS operations. Geodesy and cartography = Geodezia i Kartografia, 84(4), pp. 39-49. (In Russian). DOI: 10.22389/0016-7126-2023-994-4-39-49
Publication History
Received: 31.01.2023
Accepted: 13.04.2023
Published: 20.05.2023

Content

2023 April DOI:
10.22389/0016-7126-2023-994-4