DOI: 
10.22389/0016-7126-2023-995-5-43-51
1 Dolgopolov D.V.
Year: 
№: 
995
Pages: 
43-51

Ai Co, CJSC

1, 
Abstract:
The author considers the results of geospatial modeling of a production facility based on data from various types of surveys obtained during monitoring. The essence is to combine it in a single coordinate space for subsequent modeling with remote methods. The technological solutions are described; they enable performing geospatial modeling of pipeline transport objects on the basis of a single coordinate space due to the data from various types of remote studies. The site of the oil refinery, where reconstruction must have been carried out, was chosen as the object of the research. The remote sensing data were obtained through ground-based laser scanning and digital aerial photography using a drone. A scheme for remote sensing, information preprocessing and geospatial modeling of pipeline transportation facilities is provided. As a methodological basis for geospatial modeling, constructive methods are used, assuming the finiteness of the elements and the use of its basic components as an information unit.
References: 
1.   Avrunev E.I., Karpik A.P., Melkii V.A. Printsipy formirovaniya edinogo geoprostranstva territorii. Problemy geologii i osvoeniya nedr: Trudy XXIII Mezhdunarodnogo simpoziuma imeni akademika M. A. Usova studentov i molodykh uchenykh, posvyashchennogo 120 so dnya rozhdeniya akademika K.I. Satpaeva, 120 so dnya rozhdeniya professora K.V. Radugina, Tomsk: Izdatel'stvo TPU, 2019, 2 Vol. 1, pp. 428–429.
2.   Altyntsev M. A. Metodika integratsii dannykh mobil'nogo lazernogo skanirovaniya i aerofotos"emki dlya sozdaniya tsifrovoi modeli mestnosti. Vestnik SSUGT, Vol. 27, no. 5, pp. 5–18. DOI: 10.33764/2411-1759-2022-27-5-5-18.
3.   Ignat'eva S. S., Komissarov A. V. Sostoyanie, problemy i perspektivy primeneniya tekhnologii nazemnogo lazernogo skanirovaniya dlya obsledovaniya vertikal'nykh stal'nykh, sharovykh i gorizontal'nykh rezervuarov nefti i gaza. Interekspo Geo-Sibir', 2017, Vol. 9, no. 2, pp. 26–28.
4.   Maiorov A. A., Tsvetkov V. Ya., Andreeva O. A. Trekhmernoe geoinformatsionnoe modelirovanie pri massovom sbore informatsii. Izvestia vuzov. Geodesy and Aerophotosurveying, 2020, Vol. 64, no. 2, pp. 229–236.
5.   Makarycheva E. M., Ibragimov E. R., Kuznetsov T. I., Shurshin K. Yu. Primenenie vozdushnogo lazernogo skanirovaniya dlya geotekhnicheskogo monitoringa ob"ektov magistral'nogo truboprovoda. Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov, 2019, Vol. 9, no. 1, pp. 21–31. DOI: 10.28999/2541-9595-2019-9-1-21-31.
6.   Markova O. I., Tikunov V. S. Novye tekhnologii dlya sovremennoi geoinformatiki. InterKarto. InterGIS, 2022, Vol. 28, no. 1, pp. 5–34. DOI: 10.35595/2414-9179-2022-1-28-5-34.
7.   Amatya P. M., Kirschbaum D. B., Stanley T., Tanyas H. (2021) Landslide mapping using object-based image analysis and open source tools. Engineering Geology, no. 282 (1), pp. 106000. DOI: 10.1016/j.enggeo.2021.106000.
8.   Dalitz C., Schramke T., Jeltsch M. (2017) Iterative Hough transform for line detection in 3D point clouds. Image Processing On Line, no. 7, pp. 184–196.
9.   Duan Z., Li Y., Wang X., Wang J., Brydegaard M., Zhao G., Svanberg S. (2020) Drone-Based Fluorescence Lidar Systems for Vegetation and Marine Environment Monitoring. The European Physical Journal Conferences, no. 237 (S1), pp. 07013. DOI: 10.1051/epjconf/202023707013.
10.   Forkuo E. K., King B. (2004) Automatic fusion of photogrammetric imagery and laser scanner point clouds. International Archives of ISPRS, no. XXXV-B4, pp. 921–926.
11.   Ham Y., Han K., Lin J., Golparvar-Fard M. (2016) Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works. Visualization in Engineering, no. 4 (1), DOI: 10.1186/s40327-015-0029-z.
12.   LiDAR Drone Systems: Using LiDAR Equipped UAVs. URL: enterprise-insights.dji.com/blog/lidar-equipped-uavs (accessed: 30.04.2023).
13.   Ozhereleva T. A. (2014) Systematics for information units. European Researcher, Volume 11, no. 1 (86), pp. 1894–1900.
14.   Wu B., Tang S. (2015) Review of geometric fusion of remote sensing imagery and laser scanning data. International Journal of Image and Data Fusion, no. 6, pp. 97–114.
Citation:
Dolgopolov D.V., 
(2023) Modeling of pipeline transportation facilities based on remote sensing data. Geodesy and cartography = Geodezia i Kartografia, 84(5), pp. 43-51. (In Russian). DOI: 10.22389/0016-7126-2023-995-5-43-51
Publication History
Received: 07.03.2023
Accepted: 23.05.2023
Published: 20.06.2023

Content

2023 May DOI:
10.22389/0016-7126-2023-995-5