DOI: 
10.22389/0016-7126-2024-1003-1-14-23
1 Padve V.A.
2 Barliani A.G.
3 Salnikov V.G.
4 Gorobtsov S.R.
Year: 
№: 
1003
Pages: 
14-23

Siberian State University of Geosystems and Technologies

1, 
2, 
3, 
4, 
Abstract:
The authors discuss methods of creating an autonomous free geodetic 3D-construction, intended for further operation as a local coordinate base. The first is based on the data of separate measurement results: distances, angles and elevations between the points. The other one provides for processing 3D-coordinates calculated increments set; the data is found for all points of the mentioned construction according to separate measurements. Both technologies use pseudo-inverse matrices, the ways of obtaining based on various algorithms of least squares optimization (LS-one) and estimation of the accuracy of the structure. One way is a synthesized option of the least squares data optimization parametric version, where the g-inverse matrix is characterized by both the properties of the least squares and the minimum of the norm, is calculated automatically during the implementation of the parametric version algorithm’s synthesized option. The other is the pseudo normal method, based on creating a generalized inverse Moore – Penrose matrix (The MP). It is constructed directly for a rectangular one of parametric correction equations or for that of normal equations’ coefficients based on a recursive algorithm. Both algorithms for obtaining a pseudo-inverse matrix used to solve a system of linear algebraic equations take into account the correlation and non-precision of the free terms column
References: 
1.   Barliani A. G. Metody obrabotki i analiza prostranstvennykh i vremennykh dannykh. Novosibirsk: SGUGiT, 2016, 176 p.
2.   Kougiya V.A. Izbrannye trudy: Monografiya [Selected works: the monograph]. Под ред. М. Я. Брыня. SPb.: Peterburgskij gos. un-t putej soobshcheniya, 2012, 448 p.
3.   Linnik Yu. V. Metod naimen'shikh kvadratov i osnovy matematiko-statisticheskoi teorii obrabotki nablyudenii. Leningrad: Fizmatgiz, 1962, 352 p.
4.   Markuze Ju. I. Osnovy uravnitel'nyh vychislenij: Ucheb. posobie dlya vuzov. Moskva: Nedra, 1990, 240 p.
5.   Markuze Yu. I., Golubev V. V. Teoriya matematicheskoi obrabotki geodezicheskikh izmerenii: Ucheb. posobie dlya vuzov. Moskva: Akademicheskii prospekt, 2020, 247 p.
6.   Mashimov M. M. Metody matematicheskoi obrabotki astronomo-geodezicheskikh izmerenii. Moskva: VIA, 1990, 510 p.
7.   Padve V. A. Matematicheskaya obrabotka i analiz rezul'tatov geodezicheskikh izmerenii: Monografiya. V 2 ch. – Ch. 2: Sintezirovannye i kombinirovannye algoritmy tochnostnoi MNK-optimizatsii i analiza rezul'tatov izmerenii. Novosibirsk: SGUGiT, 2018, 134 p.
8.   Rao S. R. Lineinye statisticheskie metody i ikh primeneniya. Moskva: Nauka, 1986, 548 p.
9.   Tikhonov A. N., Arsenin V. Ya. Metody resheniya nekorrektnykh zadach. Moskva: Nauka, 1986, 288 p.
10.   Tikhonov A. N., Bol'shakov V. D., Byvshev V. A., Il'inskii A. S., Neiman Yu. M. O variatsionnom metode regulyarizatsii pri uravnivanii svobodnykh geodezicheskikh setei. Izvestia vuzov. Geodesy and Aerophotosurveying, 1978, no. 3, pp. 3–10.
11.   Shevshenko G.G., Bryn M.Ya., Naumova N.A. (2023) Pseudoinversion of matrices through the search method of nonlinear programming in the equalization of free geodesic networks. Geodezia i Kartografia, 84(1), pp. 20-28. (In Russian). DOI: 10.22389/0016-7126-2023-991-1-20-28.
12.   Sheffe G. Dispersionnyi analiz. Moskva: Nauka, 1980, 512 p.
13.   Kubáček L. (2013) Statistical theory of geodetic network. VUGTK, Zdiby, 286 p.
14.   Leick A. (2004) GPS Satellite Surveying. 3rd ed. A Wiley and Sons, Inc, New York, 435 p.
15.   Mazurov B., Levin E., Padve V. (2019) Analysis of the Least-Squares Method Evolution: from Static to Dynamic and Updated Structure Models. Surveying and Land Information Science, Volume 78, no. 1, pp. 45–50.
Citation:
Padve V.A., 
Barliani A.G., 
Salnikov V.G., 
Gorobtsov S.R., 
(2024) Autonomous free geodetic 3D-construction as a coordinate basis of the space under study. Geodesy and cartography = Geodezia i Kartografia, 85(1), pp. 14-23. (In Russian). DOI: 10.22389/0016-7126-2024-1003-1-14-23