UDC: 
DOI: 
10.22389/0016-7126-2024-1004-2-12-20
1 Kosarev N.S.
2 Sholomitskii A.A.
3 Khanzadyan M.A.
4 Serdakov L.E.
5 Krapivin V.S.
6 Suchkov I.O.
Year: 
№: 
1004
Pages: 
12-20

Siberian State University of Geosystems and Technologies

1, 
2, 

FSUE «All-Russian Scientific Research Institute of Physical-Technical and Radiotechnical Measurements» (FSUE «VNIIFTRI»)

3, 

Budker Institute of Nuclear Physics SB RAS

4, 
5, 

ООО "SibGS"

6, 
Abstract:
The results of line lengths comparison on the spatial reference basis (SRB) of SGUGiT, carried out according to the program in all combinations measurements in the forward direction from point BI01 to point BI10 in spring and summer of 2021 and 2023 using total station Leica TM30, as well as, in the same seasons of 2023 done by laser tracker Leica AT403 are given. Based on the analysis of multiple measurements of each section of the basis (at least 30 ones), the standard deviation and uncertainty were calculated. Meanwhile, at the extreme points of the base section, meteorological parameters (temperature, pressure and relative humidity) were recorded by two independent instruments, which were then entered immediately when metering with a Leica TM 30 electronic total station. In the case of the Leica AT403 laser tracker, they were automatically taken into account in specialized software management and processing of Spatial Analyzer measurement data. Due to the research results, it was found out that the expanded uncertainty in measuring the lengths of the basic lines in the range from 12 to 192 m on the WPT using a Leica AT403 laser tracker and a Leica TM30 electronic total station, taking into account the accepted errors that affect the final result, is no more than 1,4 mm, and the maximum contribution to the mistake in determining line lengths is made by the standard uncertainty estimated by type B. In addition, seasonal fluctuations in the position of individual basis points are observed
References: 
1.   Antonovich K. M., Kulikova L. G. Etalonnomu prostranstvennomu poligonu SGUGiT – 20 let. Interekspo Geo-Sibir', 2017, Vol. 1, no. 2, pp. 107–112.
2.   Brezhnev V. G., Kolesnikova Yu. V. Sovershenstvovanie metodiki kontrolya geometricheskikh parametrov vozdushnogo sudna s pomoshch'yu lazernogo trekera. Sovremennye problemy lingvistiki i metodiki prepodavaniya russkogo yazyka v VUZe i shkole, 2022, no. 35, pp. 794–801.
3.   Eroshkov V. Yu. Ispol'zovanie mobil'noi koordinatno-izmeritel'noi mashiny na baze lazernogo trekera dlya attestatsii ispytatel'nogo oborudovaniya. Gazoturbinnye tekhnologii, 2019, no. 5 (164), pp. 26–30.
4.   Efremkin O. S., Shaposhnikov S. N. Opredelenie otklonenii vnutrennego kontura tsilindricheskikh konstruktsii lazernym trekerom. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2018, Vol. 20, no. 6 (2), pp. 284–288.
5.   Karpik A.P., Lisitsky D.V. (2019) Surveying industry: prospective development directions in the post-industrial era and the digital economy. Geodezia i Kartografia, 80(4), pp. 55-64. (In Russian). DOI: 10.22389/0016-7126-2019-946-4-55-64.
6.   Karpik A. P., Seredovich V. A., Antonovich K. M., Kulikova L. G. Etalonnyi geodezicheskii poligon SGGA – unikal'nyi ob"ekt sistemy obrazovaniya RF. Interekspo Geo-Sibir', 2010, Vol. 5, no. 2, pp. 180–184.
7.   Sazonnikova N. A., Ilyukhin V. N., Surudin S. V., Mezentsev D. A. Kontrol' osnastki dlya inkremental'nogo formoobrazovaniya s pomoshch'yu lazernogo trekera. Dinamika i vibroakustika, 2021, Vol. 7, no. 4, pp. 30–39. DOI: 10.18287/2409-4579-2021-7-4-30-39.
8.   Surnin Yu. V. Polevoi astrogravigeodezicheskii etalon dlya metrologicheskikh ispytanii geodezicheskoi apparatury. Izmeritel'naya tekhnika, 2004, no. 9, pp. 3–7.
9.   Būga A., Birvydienė R., Kolosovskis R., Krikštaponis B., Obuchovski R., Paršeliūnas E., Putrimas R. Šlikas D. (2016) Analysis of the calibration quality of the Kyviškės Calibration Baseline. Acta Geodaetica et Geophysica, no. 51, pp. 505–514. DOI: 10.1007/s40328-015-0140-6.
10.   García-Asenjo L., Baselga S., Garrigues P. (2016) Deformation monitoring of the submillimetric UPV calibration baseline. Journal of Applied Geodesy, no. 11 (2), pp. 107–114. DOI: 10.1515/jag-2016-0018.
11.   García-Asenjo L., Baselga S., Atkins C., Garrigues P. (2021) Development of a submillimetric GNSS-based distance meter for length metrology. Sensors, no. 21(4):1145, DOI: 10.3390/s21041145.
12.   Karpik A. P., Kosarev N. S., Antonovich K. M., Ganagina I. G., Timofeev V. Y. (2018) Operational experience of GNSS receivers with chip scale atomic clocks for baseline measurements. Geodesy and Cartography, no. 44 (4), pp. 140–145. DOI: 10.3846/gac.2018.4051.
13.   Kosarev N. S., Lechner J., Padve V. A., Umnov I. A. (2023) Results of many years' measurements conducted at the Czech state long distances measuring standard Koštice. Science and Technique, no. 22 (1), pp. 13–19. DOI: 10.21122/2227-1031-2023-23-1-13-19.
14.   Pollinger F., Meyer T., Beyer J., Doloca N. R., Schellin W., Niemeier W., Jokela J., Hakli P., Abou-Zeid A., Meiners-Hagen K. (2012) The upgraded PTB 600 m baseline: a high-accuracy reference for the calibration and the development of long distance measurement devices. Measurement Science Technology, Volume 23, no. 094018, DOI: 10.1088/0957-0233/23/9/094018.
15.   Shchipunov A. N., Tatarenkov V. M., Denisenko O. V., Silvestrov I. S., Fedotov V. N., Vasiliev M. Yu., Sokolov D. A. (2015) A set of standards for support of the uniformity of measurements of length in the range above 24 m: current state and prospects for further development. Measurement Techniques, no. 57 (11), pp. 1228–1232. DOI: 10.1007/s11018-015-0610-9.
Citation:
Kosarev N.S., 
Sholomitskii A.A., 
Khanzadyan M.A., 
Serdakov L.E., 
Krapivin V.S., 
Suchkov I.O., 
(2024) Line lengths comparison results on the spatial reference basis SGUGiT. Geodesy and cartography = Geodezia i Kartografia, 85(2), pp. 12-20. (In Russian). DOI: 10.22389/0016-7126-2024-1004-2-12-20