UDC: 
DOI: 
10.22389/0016-7126-2024-1005-3-50-61
1 Portnov A.M.
2 Dobrovolsky D.О.
Year: 
№: 
1005
Pages: 
50-61

Moscow State University of Geodesy and Cartography (MIIGAiK)

1, 

Shakhty, LLC

2, 
Abstract:
The authors substantiate the relevance of the tasks of developing methods ensuring the greatest efficiency of implementing state land supervision and monitoring using automated procedures for the centralized formation of an annual inspection plan. The mechanisms of identifying natural objects, buildings and structures as potential ones included in the annual inspection plans on the mentioned issue are described. This meets many goals and, above all, the safety of land use, and eliminating negative processes of land degradation. Examples of using aerial photographs as the most significant practice at detecting violations in the field of land protection and use are given. To a greater extent, this applies to real estate cadastre objects with simpler geometric shapes, e.g. boundaries of land plots, buildings. The methods of comparing the geometric complexity of contours proposed in the study enable creating automated mechanisms and determine discrepancies between the actual and recorded characteristics of control objects, depending on the set goals and objectives. The expediency determining mechanisms of automated search for features with signs of land legislation violations are presented. It simplifies the implementation of control measures and makes the inspection system itself more transparent. The purpose of the research was to study the possibility of applying the theory of geometric complexity in the implementation of a centralized system of state land supervision and monitoring. In this regard, we made an attempt to use Minkovsky metrics for simpler geometric structures in contrast to natural objects, as well as morphometric indicators to identify those where land legislation is not being followed. The relative criteria values of the real estate cadastre control’s compared objects’ geometric complexity are numerically determined and proposed
References: 
1.   Akinshin N. S., Esikov O. V., Potapov A. A., Akinshin R. N., Kuleshov A. V. Eksperimental'naya otsenka effektivnosti primeneniya razmernosti Min'kovskogo dlya fraktal'nogo analiza teksturnykh izobrazhenii ob"ektov monitoringa. Sb. tr. XXVI Mezhdunar. nauch.-tekhn. konf. «Radiolokatsiya, navigatsiya, svyaz'», Voronezh: Izdatel'skii dom VGU, 2020, 6 Vol. 4, pp. 346–355.
2.   Bykova E. N. Otsenka negativnykh infrastrukturnykh eksternalii pri opredelenii stoimosti zemel'. Zapiski Gornogo instituta, 2021, Vol. 247, no. 1, pp. 154–170. DOI: 10.31897/PMI.2021.1.16.
3.   Dubrova Yu. N., Myslyva T. N., Tkacheva T. N. Kompleksnyi morfometricheskii analiz territorii Goretskogo raiona s ispol'zovaniem dannykh distantsionnogo zondirovaniya Zemli. Melioratsiya, 2020, no. 3, рр. 43–54,
4.   Zharnikov V. B. Ratsional'noe ispol'zovanie zemel' kak zadacha geoinformatsionnogo prostranstvennogo analiza. Vestnik SSUGT, 2013, no. 3 (23), pp. 77–81.
5.   Mazaev G. V. Metodiki otsenki kompaktnosti planirovochnykh struktur. Akademicheskii vestnik UralNIIproekt RAASN, 2022, no. 1, pp. 9–13. DOI: 10.25628/UNIIP.2022.52.1.002.
6.   Mazaev G. V. Topologicheskii podkhod k ponyatiyu kompaktnosti gradostroitel'nykh struktur. Sb. nauch. tr. RAASN «Fundamental'nye, poiskovye i prikladnye issledovaniya RAASN po nauchnomu obespecheniyu razvitiya arkhitektury, gradostroitel'stva i stroitel'noi otrasli Rossiiskoi Federatsii v 2021 godu», Moskva: Izdatel'stvo ASV, 2022, Vol. 1, pp. 249–257.
7.   Svetlakov V. I. Modelirovanie v sovremennom zemleustroitel'nom proektirovanii. Moskovskii ekonomicheskii zhurnal, 2022, no. 7 (2), pp. 133–145. DOI: 10.55186/2413046X_2022_7_2_115.
8.   Uchaev D. V. Metodika geoinformatsionnogo modelirovaniya rechnykh setei na osnove fraktal'nykh metodov: avtoreferat dissertatsii na soiskanie nauchnoi stepeni kandidata tekhnicheskikh nauk: 25.00.35. Geoinformatika. Moskva: MIIGAiK, 2007, 24 p.
9.   He F., Mohamadzadeh N., Sadeghnejad M., Ingram B., Ostovari Y. (2023) Fractal features of soil particles as an index of land degradation under different land-use patterns and slope-aspects. Land, no. 12(3):615, DOI: 10.3390/land12030615.
10.   Kabo-Bah K. J., Guoan T., Yang X., Na J., Xiong L. (2021) Erosion potential mapping using analytical hierarchy process (AHP) and fractal dimension. Heliyon, no. 7 (6), e07125, DOI: 10.1016/j.heliyon.2021.e07125.
11.   Mandelbrot B. B. (1982) The fractal geometry of nature. New York: W. H. Freeman and co. 460 p. DOI: 10.1002/esp.3290080415.
12.   Wu H., Sun Y., Shi W., Chen X., Fu D. (2013) Examining the satellite-detected urban land use spatial patterns using multidimensional fractal dimension indices. Remote Sensing, no. 5 (10), pp. 5152–5172. DOI: 10.3390/rs5105152.
13.   Zhao C., Li Y., Weng M. (2021) A fractal approach to urban boundary delineation based on raster land use maps: A case of Shanghai, China. Land, no. 10 (9): 941, DOI: 10.3390/land10090941.
Citation:
Portnov A.M., 
Dobrovolsky D.О., 
(2024) Comparative assessment of the terrain objects contours’ geometric complexity at implementing state land supervision and monitoring, an example of capital construction projects. Geodesy and cartography = Geodezia i Kartografia, 85(3), pp. 50-61. (In Russian). DOI: 10.22389/0016-7126-2024-1005-3-50-61
Publication History
Received: 08.11.2023
Accepted: 29.03.2024
Published: 20.04.2024

Content

2024 March DOI:
10.22389/0016-7126-2024-1005-3