DOI: 
10.22389/0016-7126-2024-1009-7-2-11
1 Dorogova I.E.
Year: 
№: 
1009
Pages: 
2-11

Siberian State University of Geosystems and Technologies

1, 
Abstract:
The author considers the principles of construction, the structure of a software and mathematical model of the Earth`s crust’s movements. It is designed to ensure the maintenance of the state reference frame relevance, the establishment and maintenance of the national reference systems’ relationship with international ones for the Russian Federation’s territory. The software implementation should include mathematical models of geodynamic processes for the state’s territory and algorithms for taking them into account for determining coordinates in a given frame of reference. The author presents a general scheme of the above-mentioned model, which consists of several layers. The first base layer containing a model of the tectonic blocks movement and complemented by those of local solutions. Four stages of the model are described. The mathematical basis and software tools are considered. Employing of the first solution of the crust movements software-mathematical model for the Russian Federation’s territory is presented. It is based on that of lithospheric plates motion NNR-MORVEL56. The results of determining the Earth`s crust’s points velocities are compared with those of the Plate Motion Calculator. The coincidence of the calculated values up to hundredths of a millimeter is noted
The research was carried out within the framework of the Scientific Research Work 'GEOTECH-QUANT-2' in order to improve the accuracy of coordinate-time definitions on the Russian Federation’s territory
References: 
1.   Dorogova I.E. Printsipial'naya skhema programmno- matematicheskoi modeli dvizhenii zemnoi kory dlya territorii Rossiiskoi Federatsii. Sbornik materialov VII Natsional'noi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem. V 3 ch. Ch. 3., Novosibirsk: SGUGiT, 2024, pp. 179–185.
2.   Altamimi Z., Metivier L., Rebischung P., Collilieux X., Chanard K., Barneoud J. (2023) ITRF2020 Plate Motion Model. Geophysical Research Letters, no. 50 (24), pp. 1–7. DOI: 10.1029/2023GL106373.
3.   Argus D. F., Gordon R. G., DeMets C. (2011) Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, no. 12 (11), pp. 1–13. DOI: 10.1029/2011GC003751.
4.   Azhari M., Altamimi Z., Azman G., Kadir M., Simons W. J. F., Sohaime R., Yunus M. Y., Irwan M. J., Asyran C. A., Soeb N., Fahmi A., Saiful A. (2020) Semi-kinematic geodetic reference frame based on the ITRF2014 for Malaysia. Journal of Geodetic Science, no. 10 (1), pp. 91–109. DOI: 10.1515/jogs-2020-0108.
5.   Bird P. (2003) An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, no. 4 (3), DOI: 10.1029/2001GC000252.
6.   Blick G., Donnelly N., Jordan A. (2009) The practical implications and limitations of the introduction of a semi-dynamic datum – a New Zealand case study. Geodetic Reference Frames. International Association of Geodesy Symposia, no. 134, pp. 115–120. DOI: 10.1007/978-3-642-00860-3_18.
7.   Chen K. H., Chuang R. Y., Ching K. E. (2020) Realization approach of non-linear post-seismic deformation model for Taiwan semi-kinematic reference frame. Earth, Planets and Space, Volume 72, no. 75, DOI: 10.1186/s40623-020-01209-y.
8.   Dhar S., Balasubramanian N., Dikshit O., Schuh H. (2022) Stable and upgraded horizontal datum for India. Current science, Volume 123, no. 1, pp. 43–51. DOI: 10.18520/cs/v123/i1/43-51.
9.   Jaffar N. J., Musa T. A., Aris W. A. W. (2019) Assessment of geocentric datum of Malaysia 2000 (GDM2000). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 6th International Conference on Geomatics and Geospatial Technology, XLII-4/W16, pp. 271–276. DOI: 10.5194/isprs-archives-XLII-4-W16-271-2019.
10.   Tobita M. (2003) Datum transformation software TKY2JGD from Tokyo Datum to a geocentric reference system. IUGG2003 Japan as G04/08P/D-027 on July 8. DOI: 10.13140/RG.2.2.17427.99368.
Citation:
Dorogova I.E., 
(2024) Developing a software and the Earth’s crust movements’ mathematical model for the Russian Federation’s territory. Geodesy and cartography = Geodezia i Kartografia, 85(7), pp. 2-11. (In Russian). DOI: 10.22389/0016-7126-2024-1009-7-2-11
Publication History
Received: 28.06.2024
Accepted: 05.08.2024
Published: 20.08.2024

Content

2024 July DOI:
10.22389/0016-7126-2024-1009-7