UDC: 
DOI: 
10.22389/0016-7126-2024-1011-9-2-11
1 Kuzin A.A.
2 Filippov V.G.
Year: 
№: 
1011
Pages: 
2-11

Empress Catherine II Saint Petersburg Mining University

1, 
2, 
Abstract:
Determination of plan view coordinates and working benchmarks heights on a landslide by linear-angular measurements using electronic total stations by the polar notching method and trigonometric levelling involves installing a prism reflector on a tripod or a pole plumb above the observed benchmark. In order to put it in the mentioned position, round levels are used, its accuracy affects precise determining the plan view coordinates and the benchmark heights. Direct visibility from the reference benchmark to the working one may be lost due to landslide displacements, reappeared vegetation or other obstacles. These circumstances may cause incomplete or distorted interpretation of the landslide hazard forecast during cyclic multi-year observations. The authors propose a new method of determining the plan view coordinates and height of the working benchmark on a landslide by linear-angular measurements on a pole with a prism reflector with its forced inclinations from the plumb position. The required data is calculated as the said parameters of the sphere center, which is constructed by approximation of those of the prism reflector node point obtained by tilting the pole. A number of experiments were carried out to confirm the performance of the method in geodetic landslide observations and its suitability for use in cases of visibility loss to the benchmark at the plumb position of the pole
References: 
1.   Valkov V.A., Vinogradov K.P., Valkova E.O., Mustafin M.G. (2022) Creating highly informative rasters based on laser scanning and aerial photography data. Geodezia i Kartografia, 83(11), pp. 40-49. (In Russian). DOI: 10.22389/0016-7126-2022-989-11-40-49.
2.   Vlasenko V. N., Ivanov P. S., Sozinov A. D. Monitoring smeshchenii opolznei i gruntovykh gidrotekhnicheskikh sooruzhenii po radarnym kosmicheskim snimkam. Izvestiya VNIIG im. B. E. Vedeneeva, 2017, Vol. 283, pp. 97–104.
3.   Vystrchil M. G., Gusev V. N., Sukhov A. K. Metodika opredeleniya pogreshnostei segmentirovannykh GRID modelei otkrytykh gornykh vyrabotok, postroennykh po rezul'tatam aerofotos"emki s bespilotnogo vozdushnogo sudna. Zapiski Gornogo instituta, 2023, Vol. 262, pp. 562–570.
4.   Druz' R. A., Protasova A. V., Okhunov Sh. R., Kshanovskaya A. V. Sravnitel'naya otsenka vozdushnogo lazernogo skanirovaniya i aerofotos"emki s bespilotnykh letatel'nykh apparatov. Gornyi informatsionno-analiticheskii byulleten' (nauchno-tekhnicheskii zhurnal), 2023, no. 5, pp. 130–141. DOI: 10.25018/0236_1493_2023_5_0_130.
5.   Elagin A. V., Zaitsev M. V., Prokhorov D. A., Shendrik N. K. Otsenka tochnosti opredeleniya koordinat sputnikovymi priemnikami EFT M3 GNSS i EFT M4 GNSS v rezhime RTK. Vestnik SSUGT, 2020, Vol. 25, no. 3, pp. 26–33.
6.   Markovich K. I., Valyushkin A. V. Issledovanie osobennostei vizirovaniya i izmereniya linii s ispol'zovaniem geodezicheskikh otrazhatelei. Vestnik Polotskogo gos. un-ta. Ser. F. Stroitel'stvo. Prikladnye nauki, 2015, no. 16, pp. 181–185.
7.   Mustafin M. G., Val'kova E. O. Marksheidersko-geomekhanicheskoe obosnovanie metodiki nablyudenii za deformatsiyami bortov kar'erov. Ugol', 2024, no. 7, pp. 55–61. DOI: 10.18796/0041-5790-2024-7-55-61.
8.   Osipov V. I., Rumyantseva N. A., Eremina O. N. Zhizn' v usloviyakh riska stikhiinykh bedstvii. Rossiiskii zhurnal nauk o Zemle, 2019, Vol. 19, no. ES6011, DOI: 10.2205/2019ES000673.
9.   Yaitskaya N. A., Brigida V. S., Gavrina O. A., Kopylov A. S. Fotogrammetricheskaya otsenka deformatsionnykh protsessov na opolznevykh sklonakh pri obespechenii ustoichivogo razvitiya territorii Kavkaza. Ustoichivoe razvitie gornykh territorii, 2023, Vol. 15, no. 3, pp. 558–567. DOI: 10.21177/1998-4502-2023-15-3-558-567.
10.   Yu J., Zhu P., Xu B., Meng X. (2017) Experimental assessment of high sampling-rate robotic total station for monitoring bridge dynamic responses. Measurement, no. 104, pp. 60–69. DOI: 10.1016/j.measurement.2017.03.014.
11.   Dematteis N., Wrzesniak A., Allasia P., Bertolo D., Giordan D. (2022) Integration of robotic total station and digital image correlation to assess the three-dimensional surface kinematics of a landslide. Engineering Geology, Volume 303, no. 106655, DOI: 10.1016/j.enggeo.2022.106655.
12.   Xue C., Psimoulis P. A., Meng X. (2022) Feasibility analysis of the performance of low-cost GNSS receivers in monitoring dynamic motion. Measurement, Volume 202, no. 111819, DOI: 10.1016/j.measurement.2022.111819.
13.   Yang C., Yin Y., Zhang J., Ding P., Liu J. (2024) A graph deep learning method for landslide displacement prediction based on global navigation satellite system positioning. Geoscience Frontiers, no. 15 (1), DOI: 10.1016/j.gsf.2023.101690.
14.   Tsai Z.-’., You G. J.-Y., Lee H.-Y., Chiu Y.-J. (2012) Use of a total station to monitor post-failure sediment yields in landslide sites of the Shihmen reservoir watershed, Taiwan. Geomorphology, no. 139–140, pp. 139–140. DOI: 10.1016/j.geomorph.2011.11.008.
Citation:
Kuzin A.A., 
Filippov V.G., 
(2024) Method for determining the plan view coordinates and height of the working benchmark on a landslide with forced inclinations of the pole from the plumb position. Geodesy and cartography = Geodezia i Kartografia, 85(9), pp. 2-11. (In Russian). DOI: 10.22389/0016-7126-2024-1011-9-2-11
Publication History
Received: 27.05.2024
Accepted: 12.09.2024
Published: 20.10.2024

Content

2024 September DOI:
10.22389/0016-7126-2024-1011-9