DOI: 
10.22389/0016-7126-2025-1024-10-21-33
1 Kasyanova E.L.
2 Lisitsky D.V.
3 Poshivaylo Ya.G.
Year: 
№: 
1024
Pages: 
21-33

Siberian State University of Geosystems and Technologies

1, 
2, 
3, 
Abstract:
The authors present scientific and methodological approaches to creating a cartographic knowledge base. Its purpose is to increase the efficiency of professional activities, including automation and robotization of production processes and implementation of artificial intelligence technologies, due to timely, targeted and effective use of accumulated knowledge. Domestic and foreign works and regulatory documents related to the matter were studied. The ontology method, based on formalizing a certain area of information using a conceptual scheme, and various approaches to geospatial knowledge were considered. The processes of the subject area formalized description and forming its conceptual structure to create intelligent cartographic systems were analyzed. An example of displaying a fragment of mapping process’ semantic network using the built-in Protégé visualizer was given. Methodological solutions and a procedure for formation, formalization and creation of a professional cartographic knowledge base are proposed. The results of experimental work on representation of professional cartographic knowledge are shown by an example of the technological process of mapping through using geographic information systems
References: 
1.   Andryukhina Yu. N., Bugakov P. Yu., Kasyanova E. L. i dr. Tsifrovaya kartografiya. Novosibirsk: SGUGiT, 2023, 442 p.
2.   Berlyant A. M. Kartograficheskij slovar'. Moskva: Nauchnyj mir, 2005, 424 p.
3.   Bessmertnyi I. A. Semanticheskaya pautina i iskusstvennyi intellekt. Nauchno-tekhnicheskii vestnik Sankt-peterburgskogo gosudarstvennogo universiteta informatsionnykh tekhnologii, mekhaniki i optiki, 2009, no. 6 (64), pp. 77–82.
4.   Matyushin M. M., Vakurina T. G., Kotelya V. V. Metody i sredstva postroeniya ontologii dlya vizualizatsii svyazannykh informatsionnykh ob"ektov proizvol'noi prirody v slozhnykh informatsionno-analiticheskikh sistemakh. Informatsionno-upravlyayushchie sistemy, 2014, no. 2 (69), pp. 9–17.
5.   Stankevich L. A. Intellektual'nye sistemy i tekhnologii. – 2-e izd., pererab. i dop. Moskva: Yurait, 2023, 495 p.
6.   Uchaev D. V. Razrabotka ontologii semanticheskogo soderzhaniya mul'timasshtabnykh elektronnykh topograficheskikh kart. Ch. 1. Teoreticheskie predposylki i metodologicheskie aspekty. Izvestiya vuzov. Geodeziya i aerofotos"emka, 2017, no. 1, pp. 53–61.
7.   Flegontov A. V., Rut'ko I. M., Voronov G. B., Smirnov V. N., Flegontov A. A., Zadubina G. A. Metody modelirovaniya znanii o mestnosti. Osnovnye teoreticheskie podkhody k polucheniyu, modelirovaniyu i obrabotke znanii o mestnosti v avtomatizirovannykh sistemakh upravleniya. Moskva: RTU MIREA, 2024, 170 p.
8.   Kharlov M. V. Informatsionnoe modelirovanie predmetnoi oblasti deyatel'nosti spetsialista. Dnevnik nauki: el. nauch. zhurnal, 2019, no. 7, URL: https://clck.ru/3PWGtP (accessed: 12.03.2025).
9.   Yankelevich S. S. Teoretiko-metodologicheskie aspekty tematicheskoi kartografii na osnove geoprostranstvennykh znanii. Izvestia vuzov. Geodesy and Aerophotosurveying, 2022, Vol. 66, no. 4, pp. 51–58.
10.   Coetzee S., Gould M., McCormack B., et. al. (2021) Towards a sustainable geospatial ecosystem beyond SDIs. URL: https://clck.ru/3PWL3K (accessed: 10.04.2025). DOI: 10.13140/RG.2.2.22555.39203.
11.   Dobesova Z., Brus J. (2012) Intelligent Systems in Cartography. In book Intelligent Systems. Ed. by V. M. Koleshko. pp. 258–276. URL: https://clck.ru/3PWFvP (accessed: 15.03.2025). DOI: 10.5772/35860.
12.   Guo X., Qian H., Wu F., Liu J. (2021) A Method for Constructing Geographical Knowledge Graph from Multisource Data. Sustainability, no. 13, 10602, DOI: 10.3390/su131910602.
13.   Hu Y. (2017) Geospatial Semantics. In Comprehensive Geographic Information Systems. Ed. B. Huang. Elsevier, Oxford, UK, URL: clck.ru/3PWJjF (accessed: 10.04.2025).
14.   Huang W. (2019) Knowledge-based geospatial data integration and visualization with Semantic Web technologies. URL: clck.ru/3PWKJs (accessed: 10.04.2025).
15.   Wang S., Zhang X., Ye P., Du M., Lu Y., Xue H. (2019) Geographic Knowledge Graph (GeoKG): A Formalized Geographic Knowledge Representation. ISPRS International Journal of Geo-Information, no. 8 (4): 184, DOI: 10.3390/ijgi8040184.
Citation:
Kasyanova E.L., 
Lisitsky D.V., 
Poshivaylo Ya.G., 
(2025) Methodological basis for making a professional cartographic knowledge base. Geodesy and cartography = Geodeziya i Kartografiya, 86(10), pp. 21-33. (In Russian). DOI: 10.22389/0016-7126-2025-1024-10-21-33