DOI: 
10.22389/0016-7126-2025-1018-4-48-55
1 Rybin I.V.
2 Sheverdyaev I.V.
3 Misirov S.A.
Year: 
№: 
1018
Pages: 
48-55

Federal research сentre Southern scientific сentre of the Russian Academy of Sciences

1, 
2, 
3, 
Abstract:
The relevance of the research lies in the study of the relationship between the morphometry of the relief with ore occurrences and deposits. Its purpose is to quantify the physical (topographic) surface of the Earth in order to identify tectonic structures with subsequent rational planning of geological exploration based on determining the morphometry of the work area by comparison with identical natural structures. The object of the study is the region of the Dnieper-Donets aulacogen with the northwest-southeast direction Kharkov- the Caspian Sea and the north-south one from Millerovo to Rostov-on-Don. As research methods we chose selection of neotectonic structures according to the method of V. P. Filosofov, using the construction of isobasic and iso-vertex surfaces of different orders, followed by subtraction of the former from the latter to calculate the relief energy. DEM SRTM3 (90 m/pixel) and ArcGIS v. 10.8 software were used as a basis. The result is presented in the form of cartographic diagrams of 1–4 orders relief energies subtractions from the modern surface, according to which a rise elongated in the north-west direction is determined. Various deposits and ore occurrences are noted, concentrated mainly in zones of higher relief energy at the foot of the identified uplift with complicating ore control structures in the form of thrusts and discharges. Areas with maximal indicators have more pronounced geological processes on the surface, leading to a change in the locality and creating conditions for exposing buried ore accumulations
The paper was prepared as part of the Southern Scientific Centre of the Russian Academy of Sciences implementation state assignment for 2025, state registration No. 125011700416-4, 125040404857-4, 125011200143-4
References: 
1.   Grishchenko M. N. Metodika ispol'zovaniya kart energii rel'efa dlya vychisleniya koeffitsienta izrezannosti sushi. Izvestiya GGO, 1939, no. 3, pp. 425–430.
2.   Zykov D. S., Poleshchuk A. V., Kolodyazhnyi S. Yu. Priznaki unasledovannogo neotektonicheskogo razvitiya raiona Mologo-Sheksninskoi depressii. Geomorfologiya, 2021, no. 4, pp. 42–52. DOI: 10.31857/S043542812104012X.
3.   Koshkarev A. V. Istochniki dannykh dlya tsifrovogo modelirovaniya rel'efa v geomorfologicheskikh issledovaniyakh. Materialy XXXVI Plenuma Geomorfologicheskoi komissii RAN, Barnaul: Izd-vo AltGU, 2018, pp. 201–207.
4.   Kuz'min S. B. Vidy i zadachi geomorfologicheskogo raionirovaniya. Geomorfologiya, 2021, no. 1, pp. 61–74. DOI: 10.31857/S0435428121010077.
5.   Panov D. G. Obshchaya geomorfologiya. Moskva: Vysshaya shkola, 1966, 427 p.
6.   Povalyaev N. R. Sovremennaya morfometriya reki Kamenka – pritoka reki Don. Materialy X Vseross. nauch.-prakt. konf. «Geoinformatsionnoe kartografirovanie v regionakh Rossii», Voronezh: Nauchnaya kniga, 2018, pp. 125–128.
7.   Rybin I.V., Sheverdyaev I.V. (2023) Morphometric studies through spatial analysis using the example of the Dnieper-Donets aulacogen. Geodezia i Kartografia, 84(4), pp. 28-38. (In Russian). DOI: 10.22389/0016-7126-2023-994-4-28-38.
8.   Filosofov V. P. Osnovy morfometricheskogo metoda poiskov tektonicheskikh struktur. Saratov: Izd-vo Saratovskogo universiteta, 1975, 232 p.
9.   Kharchenko S. V. Novye zadachi morfometrii rel'efa i avtomatizirovannye morfologicheskie klassifikatsii v geomorfologii. Geomorfologiya, 2020, no. 1, pp. 3–21. DOI: 10.31857/S043542812001006X.
10.   Bugnicourt P., Guitet S., Santos V. F., Blanc L., Sotta E. D., Barbier N., Couteron P. (2018) Using textural analysis for regional landform and landscape mapping, Eastern Guiana Shield. Geomorphology, no. 317, pp. 23–44. DOI: 10.1016/j.geomorph.2018.03.017.
11.   Li C., Zhao S., Wang Q., Shi W. (2018) Uncertainty modeling and analysis of surface area calculation based on a regular grid digital elevation model (DEM). International Journal of Geographical Information Science, Volume 32, no. 9, pp. 1837–1859. DOI: 10.1080/13658816.2018.1469136.
12.   Li W., Hsu C. Y. (2018) Automated terrain feature identification from remote sensing imagery: a deep learning approach. International Journal of Geographical Information Science, pp. 1–24. DOI: 10.1080/13658816.2018.1542697.
13.   Mandarino A. (2022) Morphological adjustments of the lower Orba Riwer (NW Italy) since the mid-nineteenth century. Geomorphology, no. 410, pp. 108280. DOI: 10.1016/j.geomorph.2022.108280.
Citation:
Rybin I.V., 
Sheverdyaev I.V., 
Misirov S.A., 
(2025) Morphometric analysis as a method of searching for mineral raw materials using the example of the Dnieper-Donetsk aulakogen. Geodesy and cartography = Geodeziya i Kartografiya, 86(4), pp. 48-55. (In Russian). DOI: 10.22389/0016-7126-2025-1018-4-48-55