1 Medvedev P.A.
2 Novgorodskaya M.V.

Omsk State Agrarian University named after P.A. Stolypin

This article contains analysis of mathematical models built depending on longitude difference degree, that are used for calculating planimetric rectangular coordinates in accordance with geodesic coordinates in the longitudinally expanded zones of Gauss Kruger conformal projection. Coefficients of these expansions are measured by successive differentiation or by recurrence formula. Disadvantages of performed coordinate mathematical transformations using schemes recommended by Federal Agency on Technical Regulating and Metrology and Euro-Asian Council for Standardization, Metrology and Certification GOST 32543-2013 for calculations in18 grade meridian zones with millimetric degree of accuracy are pointed out. Two optimal schemes with high convergence rate are suggested for calculating meridian arc length. Ineffectiveness of using formal power series for large grid zones is proved. Practical necessity of efficient schemes’ creation for calculating coordinates in accordance with any ellipsoid’s characteristics.
1.   Balandin V.N., Imshenetskiy S.P., Matveev A.Yu., Yuskevich A.V. (2007) Algorithm for converting spatial rectangular coordinates into flat rectangular ones for geodesic support of gas pipelines. Geodezia i Kartografia, 68(5), pp. 12–14.
2.   Vahrameeva L.A., Bugaevskij L.M., Kazakova Z.L. Matematicheskaya kartografiya: Ucheb. dlya vuzov. M.: Nedra, 1986, 286 p.
3.   Gan'shin V.N., Lazarev V.M. (1984) Применение рекуррентных формул для решения главных геодезических задач. Геодезия и картография, (1), pp. 17–20.
4.   Gerasimov A.P. Uravnivanie gosudarstvennoj geodezicheskoj seti. M.: Kartgeocentr – Geodezizdat, 1996, 216 p.
5.   Karelin Yu.P. Formuly dlya vychisleniya koordinat Gaussa – Kryugera po geodezicheskim koordinatam. Nauch. tr. Omskogo sel'skohozyajstvennogo in-ta, Omsk: 1972, Vol. 90, pp. 14–15.
6.   Макаров А.П. Методика исследования точности формул для вычисления прямоугольных координат проекции Гаусса – Крюгера по геодезическим. Вестник ОмГАУ, 2014, no. 2(14), pp. 80–83.
7.   Makarov A.P., Medvedev P.A. (2008) The calculation of meridian arcs length by the projective geometry method. Geodezia i Kartografia, 69(11), pp. 16–23.
8.   Morozov V.P. Kurs sferoidicheskoj geodezii. Izd. 2-e, pererab. i dop. M.: Nedra, 1979, 295 p.
9.   Sazonov A.Z. (1971) Уравнивание полигонов обширной астрономо-геодезической сети в проекции Гаусса – Крюгера. Geodesy and Cartography, (3), pp. 13–18.
10.   Hristov V.K. Koordinaty Gaussa – Kryugera na ehllipsoide vrashcheniya. M.: Geodezizdat, 1957, 264 p.
11.   Kruger L. (1912) Konforme Abbildung des Erdellipsoids in der Ebene. Veroff des Preus. Geod. Jnst., N. F., 52, Potsdam. 172 p.
Medvedev P.A., 
Novgorodskaya M.V., 
(2017) Mathematical models’ analysis of rectangular coordinates’calculation in the expanded zones of Gauss Kruger conformal projection. Geodesy and cartography = Geodezia i Kartografia, (3), pp. 14-19. (In Russian). DOI: 10.22389/0016-7126-2017-921-3-14-19
Publication History
Received: 25.07.2016
Accepted: 28.10.2016
Published: 22.04.2017


2017 March DOI: