UDC: 
DOI: 
10.22389/0016-7126-2019-954-12-31-41
1 Chursin I.N.
2 Aleshina A.R.
3 Gorokhova I.N.
Year: 
№: 
954
Pages: 
31-41

Geoinformation Research Centre RAS

1, 
2, 

Soil Institute of V.V. Dokuchaev

3, 
Abstract:
The autors present the results of studying and mapping long-term irrigated soils using remote information from the satellite Ladsat-8 on the example of an irrigated area of the south of Russia (Svetloyarsky irrigation system, Volgograd region). Natural features and history of developing the area under study are considered, the results of field research and visual analysis of remote information are given; it enabled interpreting features of irrigated soils and the nature of using agricultural fields. Basing on the developed characteristics, a remote image was classified. The classification process was carried out in two stages, with a preliminary preparation of the image. At the first stage, agricultural use of fields was classified, at the second (using the CART algorithm “decision trees”) – the allocation of irrigated soils within each field. Basing on the classification results, a map of irrigated soils was created, taking into account their agricultural development.
References: 
1.   Bartalev S. A., Egorov V. A., Zharko V. O., Lupyan E. A., Plotnikov D. E., Khvostikov S. A. Sostoyanie i perspektivy razvitiya metodov sputnikovogo kartografirovaniya rastitel'nogo pokrova Rossii. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, no. 5, pp. 203–221.
2.   Gorokhova I. N. Otsenka zasoleniya oroshaemykh pochv Nizhnego Povolzh'ya s ispol'zovaniem aerofotosnimkov: Avtoref. dis. na soisk. uch. step. kand. tekhn. nauk: 06.01.02. Moskva: Gidrovodhoz, 1992, 25 p.
3.   Gorokhova I. N., Pankova E. I. Metod distantsionnogo kontrolya za sostoyaniem oroshaemykh zemel' yuga Rossii. Aridnye ekosistemy, 1997, Vol. 3, no. 5, pp. 26–34.
4.   I.V. Vasil'ev, G.Yu. Elizarova, S.G. Miroshnichenko Gosudarstvennyj (nacional'nyj) doklad «O sostoyanii i ispol'zovanii zemel' v Rossijskoj Federacii v 2014 godu». M.: Rosreestr, 2015, 227 p. URL: rosreestr.ru/site/activity/gosudarstvennoeupravlenie-v-sfere-ispolzovaniya-i-okhrany-zemel/ gosudarstvennyy-monitoring-zemel/sostoyanie-zemelrossii/gosudarstvennyy-natsionalnyy-doklad-o-sostoyaniii-ispolzovanii-zemel-v-rossiyskoy-federatsii/
5.   Degtyareva E. T., Zhulidova A. N. Pochvy Volgogradskoi oblasti. Volgograd: Nizh.-Volzh. kn. izd-vo, 1970, 319 p.
6.   Ivanov M. A., Prishchepov A. V., Golosov V. N., Zalyaliev R. R., Efimov K. V., Kondrat'eva A. A., Kinyashova A. D., Ionova Yu. K. Metodika kartografirovaniya dinamiki pakhotnykh ugodii v basseinakh rek Evropeiskoi territorii Rossii za period 1985–2015 gg. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, no. 5, pp. 161–171. DOI: 10.21046/2070-7401-2017-14-5-161-171.
7.   Klassifikatsiya i diagnostika pochv SSSR. Moskva: Kolos, 1977, 225 p.
8.   Mandreeva E. G., Dashieva D. S. Razrabotka algoritma avtomatizirovannogo deshifrirovaniya sel'skokhozyaistvennykh ugodii. Zemel'nye i vodnye resursy: monitoring ekologo-ekonomicheskogo sostoyaniya i modeli upravleniya: Materialy Mezhdunar. nauch.-prakt. konf., posvyashch. 10-letiyu In-ta zemleustroistva, kadastrov i melioratsii (23–25 apr 2015), Ulan-Ude: Izd-vo BGSKhA im. V. R. Filippova, 2015, pp. 148–152.
9.   Novikova A. F., Gepin Lo, Konyushkova M. V. Dinamika protsessov zasoleniya-rassoleniya pochv uchastka «Chervlenoe» Svetloyarskoi orositel'noi sistemy v irrigatsionnyi i postirrigatsionnyi periody. Byulleten' pochvennogo instituta im. V. V. Dokuchaeva, 2009, no. 63, pp. 16–24.
10.   Pankova E. I., Novikova A. F. Meliorativnoe sostoyanie i vtorichnoe zasolenie oroshaemykh zemel' Volgogradskoi oblasti. Pochvovedenie, 2004, no. 6, pp. 731–744.
11.   Savin I. Yu., Otarov A., Zhogolev A. V., Ibraeva M. A., Duisekov S. Vyyavlenie mnogoletnikh izmenenii ploshchadi zasolennykh pochv Shaul'derskogo oroshaemogo massiva po kosmicheskim snimkam Landsat. Byulleten' Pochvennogo instituta im. V. V.Dokuchaeva, 2014, no. 74, pp. 49–65. DOI: 10.19047/0136-1694-2014-74-49-65.
12.   Terekhin E. A. Otsenka i avtomatizirovannoe kartografirovanie sovremennoi lesistosti ovrazhno-balochnykh sistem Belgorodskoi oblasti na osnove sputnikovykh dannykh. Nauchnye vedomosti BelGU. Ser.: Estestvennye nauki, 2019, Vol. 43, no. 2, pp. 173–181. DOI: 10.18413/2075-4671-2019-43-2-173-181.
13.   Chistyakov S. P. Sluchainye lesa: obzor. Tr. Karel'skogo nauchnogo tsentra RAN, 2013, no. 1, pp. 117–136.
14.   Abbas A., Khan S., Hussain N., Hanjra M. A., Akbar S. (2013) Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Physics and Chemistry of the Earth. Part A/B/C. pp. 55-57.
15.   Bhumika G., Aditya R., Akshay J., Arpit A., Naresh D. (2017) Analysis of Various Decision Algorithms for Classification in Data Mining. International Journal of Computer Applications, Volume 163, no. 8, pp. 15-19. DOI: 10.5120/ijca2017913660.
16.   Breiman L., Friedman J., Stone C. J., Olshen R. A. (1984) Classification and regression trees. Boca Raton: CRC Press. 366 p.
17.   Ildefonso P. S. (2014) Advances in the prognosis of soil sodicity under dryland and irrigated condition. International Soil and Water Conservation Research, Volume 2, no. 4, pp. 50-63.
18.   Jianli D., Danlin Yu. (2014) Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan-Kuqa Oasis, China, using remote sensing and electro-magnetic induction instruments. Geoderma, no. 235-236, pp. 316-322. DOI: 10.1016/j.geoderma.2014.07.028.
19.   Platonov A, Ibrakhimov M. (2014) Using satellite images for multi-annual soil salinity mapping in the irrigated areas of Syrdarya province. Innоvations for sustainability and food aecurity in arid and semiarid lands. 2nd International Conference on Arid Lands Studies. Abstract book. Samarkand, 114 p.
20.   Taghizadeh-Mehrjardi R., Minasny B., Sarmadian F., Malone B. P. (2013) Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, no. 213, pp. 15-28. DOI: 10.1016/j.geoderma.2013.07.020.
21.   Yuguo Qian, Weiqi Zhou, Jingli Yan, Weifeng Li, Lijian Han (2015) Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery. Remote sensing, no. 7, pp. 153-158. DOI: 10.3390/rs70100153.
Citation:
Chursin I.N., 
Aleshina A.R., 
Gorokhova I.N., 
(2019) Irrigated soil mapping of Volgograd region (Svetly Yar area) using Landsat-8 and Canopus-B satellite images. Geodesy and cartography = Geodezia i Kartografia, 80(12), pp. 31-41. (In Russian). DOI: 10.22389/0016-7126-2019-954-12-31-41
Publication History
Received: 16.07.2019
Accepted: 10.10.2019
Published: 31.12.2019

Content

2019 December DOI:
10.22389/0016-7126-2019-954-12