DOI: 
10.22389/0016-7126-2019-950-8-2-11
1 Tolchelnikova S.A.
2 Naumov K.N.
Year: 
№: 
950
Pages: 
2-11

Central Astronomical Observatory at Pulkovo of RAS

1, 
2, 
Abstract:
The Euclidean geometry was developed as a mathematical system due to generalizing thousands years of measurements on the plane and spherical surfaces. The development of celestial mechanics and stellar astronomy confirmed its validity as mathematical principles of natural philosophy, in particular for studying the Solar System bodies’ and Galaxy stars motions. In the non-Euclidean geometries by Lobachevsky and Riemann, the third axiom of modern geometry manuals is substituted. We show that the third axiom of these manuals is a corollary of the Fifth Euclidean postulate. The idea of spherical, Riemannian space of the Universe and local curvatures of space, depending on body mass, was inculcated into celestial mechanics, astronomy and geodesy along with the theory of relativity. The mathematical apparatus of the relativity theory was created from immeasurable quantities: a space with more than three dimensions, imaginary time and indivisible space-time. Therefore the inculcation of the relativity theory is unacceptable into astrometry which is a science of methods of space and time measuring.
References: 
1.   Born M. Einshteinovskaya teoriya otnositel'nosti. Moskva: Mir, 1964. 452 p.
2.   Brumberg V. A. Relyativistskaya nebesnaya mekhanika. Moskva: Nauka, 1972. 382 p.
3.   Brylevskaya L. I. Issledovaniya geometrii prostranstva Vselennoi v rabotakh N. I. Lobachevskogo. Astronomiya i istoriya nauki. Po materialam V Mezhdunar. konf. «Problemy prostranstva, vremeni, dvizheniya», SPb., 1999. pp. 27–31.
4.   Idel'son N. I. Jetjudy po istorii nebesnoj mehaniki. Moskva: Nauka, 1975. 495 p.
5.   Klain M. Matematika. Poisk istiny. Moskva: Mir, 1988. 295 p.
6.   Klifford V. Zdravyi smysl tochnykh nauk. Moskva: Tip. T-va I. D. Sytina, 1910. 344 p.
7.   Kopernik N. O vrashchenii nebesnyh sfer. Malyj kommentarij. Poslanie protiv Vernera. Upsal'skaya zapis'. Per. prof. I. N. Veselovskogo. Moskva: Nauka, 1964. 653 p.
8.   Murray C. A. Vektornaya astrometriya. Kiev: Naukova Dumka, 1986. 326 p.
9.   Murri S. A. K voprosu o meste geometrii v estestvoznanii. Problemy prostranstva, vremeni, dvizheniya: Sb. tr. IV Mezhdunar. konf, SPb.: Iskusstvo Rossii, 1997. pp. 115–131.
10.   Nachala Evklida. Per. s grech. D. D. Mordukhai-Baltovskogo. Vol. 1. Moskva–Leningrad: GITTL, 1948. 448 p.
11.   Parenago P. P. Kurs zvezdnoi astronomii. Moskva: GIZ, 1954. 476 p.
12.   Puankare A. O nauke. M.: Nauka, 1983. 560 p.
13.   Tolchel'nikova S.A. K voprosu o metodike opredeleniya zvezdnyh rasstoyanij v proekte «Stereoskop». Izv. GAO, No 216. 2002. pp. 272–284.
14.   Tolchel'nikova-Murri S. A. Spetsifika podkhoda k ponyatiyam prostranstva i vremeni v matematike i v astrometrii. Problemy prostranstva i vremeni v sovremennom estestvoznanii: Sb. statei, Leningrad: TNTs RAN, 1991. pp. 25–55.
15.   Einshtein A. Sobranie nauchnykh trudov. 4 Vol. 2. Moskva: Nauka, 1965. 878 p.
16.   Lobatschewsky N. (1837) Geometrie imaginaire. Journal fur die reine und ungewante Mathematic, Volume 17, 4, pp. 295–320.
17.   Soffel M. H. (1989) Relativity in Astrometry, Celestial Mechanics and Geodesy. Berlin: Springer. 208 p.
Citation:
Tolchelnikova S.A., 
Naumov K.N., 
(2019) K voprosu o dokazatel'stve pyatogo postulata Evklida i proiskhozhdenii neevklidovykh geometrii [On the matter of proving Euclidean fifth postulate and the origin of non-Euclidean geometries]. Geodesy and Cartography = Geodezija i kartografija, 80, 8, pp. 2-11. (In Russian). DOI: 10.22389/0016-7126-2019-950-8-2-11
Publication History
Received: 11.02.2019
Accepted: 13.05.2019
Published: 20.09.2019

Content

2019 August DOI:
10.22389/0016-7126-2019-950-8

QR-code page

QR-код страницы