1 Murzabekov M.M.
2 Fateev V.F.
3 Popadyev V.V.

FSUE «All-Russian Scientific Research Institute of Physical-Technical and Radiotechnical Measurements» (FSUE «VNIIFTRI»)


Roskadastr, PLC

With the advent of zenith camera, it became possible to improve the accuracy (up to 0,1″) and efficiency (no more than an hour) of measuring the plumb line deviation components at the point where the device is located in real-time mode. This enables measuring the components of the mentioned deviation at 4–12 or more points, depending on the season, during one observational night. Zenith camera is field-based, relocatable and can quantify the required components with any given discreteness, the process is fully automated. This makes the possibility of using the well-known method of astronomical leveling in a new way to define the height differences of the quasi-geoid. With a mistake in computing the deviation of a plumb line of 0,2″, the error in determining the elevation of the quasi-geoid heights is less than 1 mm at a kilometer distance between the points. This indicator is comparable with miscalculating of existing levels. In this case, there is no need for direct visibility between measurement points, computations can be performed between unrelated spots, and the distances between them can be kilometers or dozens of them. The authors present reviews of works on the use of zenith camera in creating quasi-geoid height models, develop the theory of astronomical leveling, consider its errors, and compare it with other leveling methods.
The study was carried out with the financial support of the Russian Foundation for Basic Research within the framework of the scientific project No. 19-29-11023
1.   Gaivoronskii S. V., Kuz'mina N. V., Tsodokova V. V. Avtomatizirovannyi zenitnyi teleskop dlya resheniya astronomo-geodezicheskikh zadach. Navigatsiya po gravitatsionnomu polyu Zemli i ee metrologicheskoe obespechenie. Doklady nauchno-tekhnicheskoi konferentsii, Mendeleevo: VNIIFTRI, 2017, pp. 197–205.
2.   Murzabekov M. M., Fateev V. F., Yuzefovich P. A. Izmereniya uklonenii otvesa na izvestnoi Moskovskoi attraktsii c pomoshch'yu tsifrovogo astroizmeritelya. Astronomicheskii zhurnal, 2020, Vol. 97, no. 10, pp. 873–880. DOI: 10.31857/S0004629920100059.
3.   Ogorodova L.V. Vysshaya geodeziya. Chast' III. Teoreticheskaya geodeziya: Ucheb. dlya vuzov. M.: Geodezkartizdat, 2006, 384 p.
4.   Ostach O.M. (1994) Astronomical-gravimetric leveling: a retrospective view. Geodezia i Kartografia, 55(3), pp. 28–33.
5.   Popov V. N., Chekalin S. I. Geodeziya. Moskva: Gornaya kniga, 2007, 518 p.
6.   Fateev V. F., Rybakov E. A. Eksperimental'naya proverka kvantovogo nivelira na mobil'nykh kvantovykh chasakh. Doklady Akademii nauk. Fizika, tekhnicheskie nauki, 2020, Vol. 495, pp. 34–37.
7.   Fateev V. F., Smirnov F. R., Rybakov E. A. Izmerenie effekta udvoeniya gravitatsionnogo smeshcheniya chastoty s pomoshch'yu kvantovogo nivelira na vodorodnykh chasakh. Pis'ma v ZhTF, 2022, Vol. 48, 7. pp. 36–38.
8.   Chernov I.V., Alekseev V.F., Yakovlev A.I. Opredelenie azimutov s primeneniem otnositel’nogo metoda kosmicheskoj geodezii bez ispol’zovaniya iskhodnoj geodezicheskoj osnovy [Determination of azimuths with the use of a relative method of space geodesy without using the original geodesic Foundation]. Informaciya i Kosmos, 2016, 3. pp. 103–107.
9.   Abele M., Balodis J., Janpaule I., Lasmane I., Rubans A., Zarins A. (2012) Digital zenith camera for vertical deflection determination. Geodesy and Cartography, no. 38 (4), DOI: 10.3846/20296991.2012.755324.
10.   Albayrak M., Halicioğlu K., Özlüdemir M. T., Başoğlu B., Deniz R., Tyler A. R. B., Aref M. M. (2019) The use of the automated digital zenith camera system in Istanbul for the determination of astrogeodetic vertical deflection. Boletim de Ciencias Geodesicas, no. 25 (4), DOI: 10.1590/s1982-21702019000400025.
11.   Hirt C. (2011) Assessment of EGM2008 over Germany using accurate quasigeoid heights from vertical deflections, GCG05 and GPS/leveling. Zeitschrift für Geodäsie. Geoinformation und Landmanagement, no. 136 (3), pp. 138–149.
12.   Hirt C., Bürki B., Somieski A., Seeber G. (2010) Modern determination of vertical deflections using digital zenith cameras. Journal surveying engineering, no. 136, pp. 1–12. DOI: 10.1061/(ASCE)SU.1943-5428.0000009.
13.   Hirt C., Flury J. (2008) Astronomical-topographic levelling using high-precision astrogeodetic vertical deflections and digital terrain model data. Journal of Geodesy, no. 82, pp. 231–248. DOI: 10.1007/s00190-007-0173-x.
14.   Jäger R., Kälber S. (2006) Precise Transformation of Classical Networks to ITRF by CoPaG and Precise Vertical Reference Surface Representation by DFHRS – General Concepts and Realisation of Databases for GIS, GNSS and Navigation Applications. Proceedings to GeoSiberia, no. 1, pp. 3–31.
15.   Li Y. C., Sideris M. G., Schwarz K. P. (1995) A numerical investigations on height anomaly prediction in mountainous areas. Journal of Geodesy, Volume 69, no. 3, pp. 143–156.
16.   Morozova K., Jäger R., Zarins A., Balodis J., Varna I., Silabriedis G. (2021) Evaluation of quasi-geoid model based on astrogeodetic measurements: case of Latvia. Journal of Applied Geodesy, no. 15 (4), pp. 319–327. DOI: 10.1515/jag-2021-0030.
17.   Somieski A. (2008) Astrogeodetic Geoid and Isostatic Considerations in the North Aegean Sea, Greece. A dissertation submitted to the ETH Zurich for the degree of Doctor of Sciences,
18.   Tian L., Guo J., Han Y., Lu X., Liu W., Wang Z., Wang B., Yin Z., Wang H. (2014) Digital zenith telescope prototype of China. Chinese Science Bulletin, no. 59 (17), pp. 1978–1983. DOI: 10.1007/s11434-014-0256-z.
19.   Volarik T., Machotka R., Kuruc M., Puchrik L., Jurcik J. (2013) Determination of Quasigeoid in Local Network Using Modern Astrogeodetic Technologies. Acta Geodynamica et Geomaterialia, Volume 10, no. 4 (172), pp. 437–442. DOI: 10.13168/AGG.2013.0043.
Murzabekov M.M., 
Fateev V.F., 
Popadyev V.V., 
(2023) Using astronomical leveling in the modern geodetic support system. Geodesy and cartography = Geodezia i Kartografia, 84(4), pp. 2-13. (In Russian). DOI: 10.22389/0016-7126-2023-994-4-2-13