UDC: 
DOI: 
10.22389/0016-7126-2024-1006-4-2-9
1 Mazurova E.M.
2 Neiman Yu.M.
3 Sugaipova L.S.
Year: 
№: 
1006
Pages: 
2-9

Roskadastr, PLC

1, 
2, 
3, 
Abstract:
One of the main tasks of modern physical geodesy is to determine the high-frequency part of the Earth’s gravity field (EGF), which inevitably depends on the individual characteristics of a particular computational area. It is well known that in global EGF modeling it is especially convenient to have a spherical function series. However, these series forming a reliable basis for global modeling are unsuitable for approximation in a local area because they lose orthogonality, the most important property of basis functions. The authors describe the possibility of imparting this property to spherical functions in the necessary part of the sphere, which enables further using the habitual apparatus of harmonic series for approximation of EGF in local areas. Of course, the foregoing is only concerned to the most basic concepts of the new direction in modeling the EGF in a local region
The study was carried out within the framework of the Federal project “Maintenance, development and use of the GLONASS system” of the state program of the Russian Federation “Russian Space Activities” for 2021–2030, No. 1210806000081-5
References: 
1.   Gofman-Vellengof B., Morits G. Fizicheskaya geodeziya. Per. s angl. pod red. Yu. M. Neimana. Moskva: Izd-vo MIIGAiK, 2007, 426 p.
2.   Kononova A. A., Belkova A. L. Uravneniya matematicheskoi fiziki. SPb.: Balt. gos. un-t, 2019, 77 p.
3.   Koshlyakov N. S., Gliner E. B., Smirnov M. M. Osnovnye differentsial'nye uravneniya matematicheskoi fiziki. Moskva: Fizmatgiz, 1962, 768 p.
4.   Neiman Yu. M., Sugaipova L. S. Sfericheskie funktsii i ikh primenenie v geodezii: Ucheb. Posobie. Moskva: MIIGAiK, 2005, 82 p.
5.   Stepanov N. N. Sfericheskaya trigonometriya. Moskva: OGIZ, 1948, 155 p.
6.   Tikhonov A. N., Samarskii A. A. Uravneniya matematicheskoi fiziki. Moskva: Nauka, 1968, 743 p.
7.   De Santis A. (1992) Conventional Spherical Harmonic Analysis for Regional Modeling of Geomagnetic Field. Geophysical Research Letters, Volume 19, no. 10, pp. 1065–1067. DOI: 10.1029/92GL01068.
8.   De Santis A., Falcone C. (1995) Spherical cap models of Laplacian potentials and general fields. Geodetic Theory Today, no. 114, pp. 141–150. DOI: 10.1007/978-3-642-79824-5_25.
9.   Haines G. (1985) Spherical cap harmonic analysis of geomagnetic secular variation over Canada 1960–1983. Journal of Geophysical Research, no. 90, B14, pp. 12563–12574. DOI: 10.1029/JB090IB14P12563.
10.   Haines G. (1991) Power spectra of sub-periodic functions. Physics of the Earth and Planetary Interiors, no. 65, pp. 231–247.
11.   Pavon-Carrasco F. J. Modelización regional del campo geomagnético en Europa para los últimos 8000 años y desarrollo de aplicaciones. URL: clck.ru/3AMewk (accessed: 10.01.2024).
12.   Thebault E., Schott J. J., Mandea M. (2006) Revised spherical cap harmonic analysis (R-SCHA): Validation and properties. Journal of Geophysical Research, no. 111, B1, DOI: 10.1029/2005JB003836.
13.   Torta Miquel J. (2020) Modelling by Spherical Cap Harmonic Analysis: A Literature Review. Surveys in Geophysics, no. 41, pp. 201–247. DOI: 10.1007/s10712-019-09576-2.
14.   Younis G. Regional Gravity Field Modeling with Adjusted Spherical Cap Harmonics in an Integrated Approach. URL: clck.ru/3ANKa3 (accessed: 10.01.2024).
Citation:
Mazurova E.M., 
Neiman Yu.M., 
Sugaipova L.S., 
(2024) A system of spherical functions orthogonal in the local segment of the sphere. Geodesy and cartography = Geodezia i Kartografia, 85(4), pp. 2-9. (In Russian). DOI: 10.22389/0016-7126-2024-1006-4-2-9