ISSN 0016-7126 (Print)
ISSN 2587-8492 (Online)
1. Gofman-Vellengof B., Morits G. Fizicheskaya geodeziya. Per. s angl. pod red. Yu. M. Neimana. Moskva: Izd-vo MIIGAiK, 2007, 426 p. |
2. Kononova A. A., Belkova A. L. Uravneniya matematicheskoi fiziki. SPb.: Balt. gos. un-t, 2019, 77 p. |
3. Koshlyakov N. S., Gliner E. B., Smirnov M. M. Osnovnye differentsial'nye uravneniya matematicheskoi fiziki. Moskva: Fizmatgiz, 1962, 768 p. |
4. Neiman Yu. M., Sugaipova L. S. Sfericheskie funktsii i ikh primenenie v geodezii: Ucheb. Posobie. Moskva: MIIGAiK, 2005, 82 p. |
5. Stepanov N. N. Sfericheskaya trigonometriya. Moskva: OGIZ, 1948, 155 p. |
6. Tikhonov A. N., Samarskii A. A. Uravneniya matematicheskoi fiziki. Moskva: Nauka, 1968, 743 p. |
7. De Santis A. (1992) Conventional Spherical Harmonic Analysis for Regional Modeling of Geomagnetic Field. Geophysical Research Letters, Volume 19, no. 10, pp. 1065–1067. DOI: 10.1029/92GL01068. |
8. De Santis A., Falcone C. (1995) Spherical cap models of Laplacian potentials and general fields. Geodetic Theory Today, no. 114, pp. 141–150. DOI: 10.1007/978-3-642-79824-5_25. |
9. Haines G. (1985) Spherical cap harmonic analysis of geomagnetic secular variation over Canada 1960–1983. Journal of Geophysical Research, no. 90, B14, pp. 12563–12574. DOI: 10.1029/JB090IB14P12563. |
10. Haines G. (1991) Power spectra of sub-periodic functions. Physics of the Earth and Planetary Interiors, no. 65, pp. 231–247. |
11. Pavon-Carrasco F. J. Modelización regional del campo geomagnético en Europa para los últimos 8000 años y desarrollo de aplicaciones. URL: clck.ru/3AMewk (accessed: 10.01.2024). |
12. Thebault E., Schott J. J., Mandea M. (2006) Revised spherical cap harmonic analysis (R-SCHA): Validation and properties. Journal of Geophysical Research, no. 111, B1, DOI: 10.1029/2005JB003836. |
13. Torta Miquel J. (2020) Modelling by Spherical Cap Harmonic Analysis: A Literature Review. Surveys in Geophysics, no. 41, pp. 201–247. DOI: 10.1007/s10712-019-09576-2. |
14. Younis G. Regional Gravity Field Modeling with Adjusted Spherical Cap Harmonics in an Integrated Approach. URL: clck.ru/3ANKa3 (accessed: 10.01.2024). |
(2024) A system of spherical functions orthogonal in the local segment of the sphere. Geodesy and cartography = Geodezia i Kartografia, 85(4), pp. 2-9. (In Russian). DOI: 10.22389/0016-7126-2024-1006-4-2-9 |