1 Shikhov A.N.
2 Abdullin R.K.
3 Semakina A.V.

Perm State National Research University

The authors discuss the methods and results of mapping the forest susceptibility to wildfires and windthrows on the example of the Ural region. We used the previously published database of fire-and wind-related forest damages in the Ural region for 2000–2016 as input data. The method of mapping is based on the analysis of the relationships of fire- and wind-damaged area with forest species composition, landscape and climatic variables, and with some indicators of anthropogenic development of the territory. The predominant forest species make the main factor determining the exposure to wildfires and windthrows. So, the calculations were performed separately for forests with various predominant species. As a result, the maps of forest susceptibility to wildfires and windthrows were created for the entire territory of the Ural, Perm region and separately for the Krasnovishersk district of the mentioned region. The obtained estimates can be used both in forestry planning and improving the monitoring of wildfires and windthrows.
The study was funded by the Russian Foundation for Basic Research (projects No. 19-05-00046-a, 18-35-00055-mol-a).
1.   Skvortsova E. B., Ulanova N. G., Basevich V. F. Ekologicheskaya rol' vetrovalov. Moskva: Lesnaya promyshlennost', 1983, 122 p.
2.   Khvostikov S. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Lupyan E. A. Regional'naya optimizatsiya parametrov prognoznoi modeli prirodnykh pozharov i operativnoe modelirovanie dinamiki ikh razvitiya s ispol'zovaniem dannykh sputnikovykh nablyudenii. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, no. 3, pp. 91–100.
3.   Shikhov A. N., Zaripov A. S. Mnogoletnyaya dinamika poter' lesov ot pozharov i vetrovalov na severo-vostoke Evropeiskoi Rossii po sputnikovym dannym. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, no. 7, pp. 114–128.
4.   Arino O., Bicheron P., Achard F., Latham J., Witt R., Weber J.-L. (2008) GLOBCOVER: the most detailed portrait of Earth. European Space Agency Bulletin, no. 136, pp. 24-31.
5.   Bartalev S. A., Ershov D. V., Isaev A. S., Potapov P. V., Turubanova S. A., Yaroshenko A. Yu. (2004) Russia’s Forests - Dominating Forest Types and Their Canopy Density (Map, scale 1 : 14 000 000). Moscow: Greenpeace Russia and RAS Centre for Forest Ecology and Productivity.
6.   Chuvieco E., Salas J. (1996) Mapping the spatial distribution of forest fire danger using GIS. International Journal of Geographical Information Systems, no. 10 (3), pp. 333-345.
7.   (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Cambridge University Press, Cambridge, UK and New York, USA. pp. 1-32.
8.   Díaz-Delgado R., Lloret F., Pons X. (2004) Spatial patterns of fire occurrence in Catalonia, NE, Spain. Landscape Ecology, no. 19 (7), pp. 731-745.
9.   Fick S. E., Hijmans R. J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, no. 37, pp. 4302–4315.
10.   Gardiner B., Byrne K., Hale S., Kamimura K., Mitchell S. J., Peltola H., Ruel J-C. (2008) A review of mechanistic modelling of wind damage risk to forests. Forestry, no. 81 (3), pp. 447-463.
11.   Gigović L., Pourghasemi H. R., Drobnjak S., Bai S. (2019) Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia’s Tara National Park. Forests, no. 10 (5), 408 p.
12.   Krylov A., Potapov P., Loboda T., Tyukavina A., Turubanova S., Hansen M. C., McCarty J. L. (2014) Remote sensing estimates of stand-replacement fires in Russia, 2002-2011. Environmental Research Letters, no. 9 (10),
13.   Potapov P. V., Turubanova S. A., Tyukavina A., Krylov A. M., McCarty J. L., Radeloff V. C., Hansen M. C. (2015) Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sensing of Environment, no. 159, pp. 28-43.
14.   Seidl R., Fernandes P. M., Fonseca T. F., Gillet F., Jönsson A. M., Merganičová K., Netherer S., Arpaci A., Bontemps J.-D., Bugmann H., González-Olabarria J. R., Lasch P., Meredieu C., Moreira F., Schelhaas M.-J., Mohren F. (2011) Modelling natural disturbances in forest ecosystems: A review. Ecological Modelling, no. 222(4), pp. 903-924.
15.   Seidl R., Schelhaas M. J., Lexer M. J. (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biology, no. 17(9), pp. 2842-2852.
16.   Shikhov A. N., Perminova E. S., Perminov S. I. (2019) Satellite-based analysis of the spatial patterns of fire and storm-related forest disturbances in the Ural region, Russia. Natural Hazards, no. 97(1), pp. 283-308.
Shikhov A.N., 
Abdullin R.K., 
Semakina A.V., 
(2020) Mapping forest areas threatened by fires and windthrows (on the example of the Ural territory). Geodesy and cartography = Geodezia i Kartografia, 958(4), pp. 19-30. (In Russian). DOI: 10.22389/0016-7126-2020-958-4-19-30
Publication History
Received: 15.07.2019
Accepted: 30.01.2020
Published: 20.05.2020


2020 April DOI:

QR-code page

QR-код страницы