DOI: 
10.22389/0016-7126-2024-1006-4-20-29
1 Krasnoshtanova N.E.
2 Cherkashin A.K.
Year: 
№: 
1006
Pages: 
20-29

Sochava Institute of Geography SB RAS

1, 
2, 
Abstract:
Geoinformation modeling and mapping were carried out and depicted in cartograms of the individual parameters of the models necessary for calculating the society response current indicators to spreading of the new coronavirus COVID-19 pandemic in various countries. The epidemic process is described in terms of the reliability theory by the accumulation of the disease frequency as the sum of the daily increase proportion in coronavirus infection’s confirmed cases. The Fréchet distribution function of the maximum values of the population reaction moments to contagion is used as a mathematical model for the growth trend. The statistical processing of spatial data is based on a non-dimensional indicator of integrated disease hazard and its linearized version, which enables calculating the mapped parameters of the model changing from country to country and indicating the efficiency of prevention and anti-epidemic measures implemented by the state and society
This work was done under a project of state assignment of V. B. Sochava Institute of Geography SB RAS No. АААА-А21-121012190056-4
References: 
1.   Vlasenkova T. A., Panchenko T. M., Tsypin A. P. Indikatornyi metod kak instrument obespecheniya finansovoi bezopasnosti khozyaistvuyushchego sub"ekta. Izv. Saratovskogo un-ta. Novaya seriya. Ser. Ekonomika. Upravlenie. Pravo, 2020, Vol. 20, 3. pp. 271–283. DOI: 10.18500/1994-2540-2020-20-3-271-283.
2.   Mushtaikin A. P., Teslenok S. A., Semina I. A., Il'kaev S. K. Geoinformatsionnoe kartografirovanie izbytochnoi smertnosti v Evrope v 2020–2021 godakh na fone pandemii koronavirusa. InterKarto. InterGIS, 2022, Vol. 28, no. 2, pp. 332–346. DOI: 10.35595/2414-9179-2022-2-28-332-346.
3.   Panin A. N., Ryl'skii I. A., Tikunov V. S. Prostranstvennye zakonomernosti rasprostraneniya pandemii COVID-19 v Rossii i mire: kartograficheskii analiz. Vestnik Moskovskogo un-ta. Ser. 5: Geografiya, 2021, no. 1, pp. 62–77.
4.   Pastukhova E. Ya., Morozova E. A. Izbytochnaya smertnost' v sibirskikh regionakh v usloviyakh pandemii COVID-19: dinamika i faktory vliyaniya. Regionologiya, 2021, Vol. 30, no. 3, pp. 602–623. DOI: 10.15507/2413-1407.120.030.202203.602-623.
5.   Pilyasov A. N., Zamyatina N. Yu., Kotov E. A. Rasprostranenie pandemii Covid-19 v regionakh Rossii v 2020 godu: modeli i real'nost'. Ekonomika regiona, 2021, Vol. 17, no. 4, pp. 1079–1095. DOI: 10.17059/ekon.reg.2021-4-3.
6.   Rodoman B. B. Kak ya prishel k Baranskomu. Sotsial'no-ekonomicheskaya geografiya. Vestnik ARGO, 2012, no. 1, pp. 57–63.
7.   Cherkashin A. K., Lesnykh S. I., Krasnoshtanova N. E. Geoinformatsionnyi monitoring i matematicheskoe modelirovanie razvitiya pandemii koronavirusa COVID-19. Informatsionnye i matematicheskie tekhnologii v nauke i upravlenii, 2021, no. 2 (15), pp. 61–84.
8.   Zhou C., Su F., Pei T., Zhang A., Du Y., Luo B., Cao Z., Wang J., Yuan W., Zhu Y., Song C., Chen J., Xu J., Li F., Ma T., Jiang L., Yan F., Yi J., Hu Y., Liao Y., Xiao H. (2020) COVID-19: Challenges to GIS with Big Data. Geography and Sustainability, no. 1(1), pp. 77–87. DOI: 10.1016/j.geosus.2020.03.005.
9.   Franch-Pardo I., Napoletano B. M., Rosete-Verges F., Billa L. (2020) Spatial analysis and GIS in the study of COVID-19. A review. Science of the Total Environment, Volume 739, no. 140033, DOI: 10.1016/j.scitotenv.2020.140033.
10.   Grekousis G., Wang R., Liu Y. (2021) Mapping the geodemographics of racial, economic, health, and COVID-19 deaths inequalities in the conterminous US. Applied Geography, Volume 135, no. 102558, DOI: 10.1016/j.apgeog.2021.102558.
11.   Kermack W. ќ., McKendrick A. G. (1991) Contributions to the mathematical theory of epidemics – III. Further studies of the problem of endemicity. Bulletin of Mathematical Biology, no. 53, pp. 89–118. DOI: 10.1007/BF02464425.
12.   Ma J., Zhu H., Li P., Liu C., Li F., Luo Z., Zhang M., Li L. (2022) Spatial patterns of the spread of COVID-19 in Singapore and the influencing factors. ISPRS International Journal of Geo-Information, Volume 11, no. 3: 152, DOI: 10.3390/ijgi11030152.
13.   Sahu M., Jhariya D. C., Singh R., Srivastava I., Mishra S. K. (2022) GIS based spatial analysis and prediction of Covid-19 cases. Journal of Physics: Conference Series, Volume 2273, no. 012021, DOI: 10.1088/1742-6596/2273/1/012021.
14.   Therneau T. M., Grambsch P. M. (2000) Modeling survival data: extending the Cox model. Springer Science + Business Media, New York, 350 p.
15.   Wang H., Paulson K. R., Pease S. A. et al. (2022) Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020–21. The Lancet, Volume 399, no. 10334, pp. 1513–1536. DOI: 10.1016/S0140-6736(21)02796-3.
Citation:
Krasnoshtanova N.E., 
Cherkashin A.K., 
(2024) Mapping the heterogeneity of population response in different countries to the spread of COVID-19. Geodesy and cartography = Geodezia i Kartografia, 85(4), pp. 20-29. (In Russian). DOI: 10.22389/0016-7126-2024-1006-4-20-29
Publication History
Received: 07.07.2023
Accepted: 24.04.2024
Published: 20.05.2024

Content

2024 April DOI:
10.22389/0016-7126-2024-1006-4